
1

Akraino
Platform
Security
Architecture

WHITE PAPER:

1st edition - March 2023

www.akraino.org

2

Acknowledgment .. 3

1 Abstract ..4
1.1 Target Audience .. 4

2 Terms and Abbreviations ... 5

3 Introduction ... 6
3.1 Problem Statement .. 6

3.2 Akraino Platform Security Goals .. 7

4 Platform Security .. 8
4.1 Platform Roots of Trust ... 8

4.2 Platform Verified Boot ... 10

4.3 Platform Measured Boot... 11

4.4 Platform Isolation of Trusted Processes .. 12

4.5 Platform Boot Flows ... 13

5 Questionnaire ... 14
5.1 Use Cases ... 14

5.2 Platform Security Questionnaire ... 15

5.3 System Software Security Questionnaire .. 17

6 Conclusion ...20
Appendix A .. 21

Appendix B .. 23

Appendix C .. 29

References .. 32

Figures
FIGURE 1. SYSTEM PLATFORM AND SOFTWARE LAYERS .. 8

FIGURE 2. VERIFIED BOOT. CHAIN OF VERIFICATION. ... 12

FIGURE 3. VERIFIED BOOT. VERIFICATION BY TRUSTED ENVIRONMENT. 12

FIGURE 4. MEASURED BOOT. EACH FIRMWARE MEASURES NEXT ONE. .. 13

FIGURE 5. MEASURED BOOT. MEASUREMENTS BY TRUSTED ENVIRONMENT. 13

FIGURE 6. VERIFIED BOOT AND MEASURED BOOT SIDE-BY-SIDE. ... 23

FIGURE 7. INTEL® BOOT GUARD CONCEPT ... 25

FIGURE 8. VERIFIED BOOT EXAMPLE .. 26

FIGURE 9. MEASURED BOOT EXAMPLE. .. 27

FIGURE 10. ARMV8-A AND ARMV9-A EXCEPTION MODEL. ... 30

FIGURE 11. TRUSTED BOOT FLOW. .. 31

Table of Contents

3

Acknowledgment
The following materials were used in the creation of this whitepaper:

• The PSA Certified™ documents numbered [3], [4] and [7] in the references section of
this whitepaper, all © Copyright Arm Limited 2017-2022.

• The Arm Aarch64 Exceptions Model document numbered [2] in the references
section of this whitepaper, all © Copyright Arm Limited.

• The “Intel® Hardware Shield – Below-the-OS Security” documents numbered
[8] and [9] in the references section of this whitepaper, all © Copyright Intel®
Corporation.

Such content is used with permission. Your use of such content is governed by the terms
set out at the front of the applicable document (links provided in the references section).
This document does not provide you with any legal rights to any intellectual property in
either Arm or Intel® technology or products.

This White Paper is issued for information only. It does not constitute an official or
agreed position of Akraino, nor of its members. The views expressed are entirely those of
the author(s) and contributor(s).

Akraino declines all responsibility for any errors and any loss or damage resulting from
use of the contents of this White Paper.

Akraino also declines responsibility for any infringement of any third party’s Intellectual
Property Rights (IPR) but will be pleased to acknowledge any IPR and correct any infringe-
ment of which it is advised.

Copyright Notification

Copying or reproduction in whole is permitted if the copy is complete and unchanged
(including this copyright statement).

Trademark Notification

Any trademarks mentioned in this paper belong to their respective trademark holders.

4

1 Abstract
During Akraino blueprint development, blueprint owners may put a lot of effort into
analyzing security threats and implementing security features in their projects. Howev-
er, in many cases, blueprint owners assume that the blueprint execution environment
is well protected and does not require their attention. Such assumptions may lead to
attacks using platform-level vulnerabilities that interfere with the blueprint functionality
and cause the loss of private or critical data. For this reason, the requirements for plat-
form-level security should be considered an important part of blueprint requirements.

The Akraino PSA, Platform Security Architecture, defines core security requirements for
Akraino platforms and blueprint execution environments.

Akraino PSA requirements are platform agnostic and define security requirements for
platform hardware and system software. Appendices at the end of the document pro-
vide information about platform specific implementations of these requirements by Arm
and Intel.

1.1 Target Audience
This Whitepaper is written for the following audience:

1. Akraino Blueprint owners and developers

2. Akraino platform owners

3. Cloud environment providers

4. Akraino Blueprint integrators

5

2 Terms and Abbreviations
TERM DESCRIPTION

ACM Authenticated Compute Module

ACRAM Authenticated Code RAM

AIK (TPM) Attestation Identity Key

AP Application Processor

BL Boot Loader

CPLD Complex Programmable Logic Device

CoT Chain of Trust

EK (TPM) Endorsement Key

EL Exception Level

FPF Field Programming Fuses

hRoT Hardware Root of Trust

IBB Initial Boot Block

mTLS Mutual Transport Layer Security

OEM/ODM Original Equipment Manufacturer/Original Design Manufacturer

NSPE Non-Secure Processing Environment

PCH Platform Controller Hub

PFR Platform Firmware Resilience

PK Public Key

PKCS Public-Key-Cryptography Standards

PRoT Platform Root of Trust

RMA Return Merchandise Authorization

ROM Read Only Memory

RoT Root of Trust

ROTPK Root of Trust Public Key

SCP System Control Processor

SiP Silicon Provider (manufacturer of SoC)

SMM System Management Mode

SoC System on a Chip

SPE Secure Processing Environment

SPS Server Platform Services

TBB Trusted Board Boot

TCB Trusted Computing Base

TCG Trusted Computing Group

TLS Transport Layer Security

TPM Trusted Platform Module

UEFI Unified Extensible Firmware Interface

VMM Virtual Machine Manager

6

3 Introduction

3.1 Problem Statement
Platform security refers to the security architecture, tools and processes that ensure
the security of an entire computing platform. It uses bundled/unified security software,
systems, and processes to enable the security of a computing platform’s hardware,
software, network, storage, and other components[3]. Figure 1 depicts the areas/layers
involved with platform security.

FIGURE 1 SYSTEM PLATFORM AND SOFTWARE LAYERS

The goal of platform security is to secure all layers and components within a platform.
This enables securing an entire platform by using unified security requirements.

The objectives of platform security for the Akraino project are to:

• Be architecture agnostic.

• Maintain the integrity of the platform layer and provide a safe execution
environment for Akraino Blueprint software stacks.

• Define secure boot requirements based on the platform Root-of-Trust.

• Attesting of the platform’s secure state of integrity.

• Protection of key assets in the platform:

• Platform critical data (platform ID, encryption keys, configuration data, etc.).

• Mutable firmware components.

• Secure platform firmware update.

• Protect platform runtime environment and data.

• Utilize platform security capabilities and security services in the Akraino Blueprint
software stacks.

7

3.2 Akraino Platform Security Goals
The platform security goals include:

1. Unique identification. Devices shall be uniquely identifiable.

2. Security lifecycle. Devices shall support a security lifecycle. The device states shall
be attestable and may impact access to data that is bound to the device.

3. Attestation. Devices shall be securely attestable.

4. Software authorization, devices shall ensure that only authorized software is
executed. Secure boot and secure loading processes are necessary to prevent
unauthorized software from being executed.

5. Secure update. Devices shall support secure update of software, or platform
critical data such as hardware configuration.

6. Anti-rollback. Devices shall prevent unauthorized rollback of updates.

7. Isolation. Devices shall support isolation. Isolation of trusted services from one
another and from less trusted services is essential to protect confidentiality and
integrity of those services.

8. Interaction. Devices shall support interaction over isolation boundaries. The
interfaces must not be used to compromise confidentiality and integrity of the
interacting services or of the device.

9. Cryptographic and trusted services. All devices shall support a minimum set of
trusted services and cryptographic operations that are necessary to support other
security goals.

 

8

4 Platform Security
The Akraino Platform Security Architecture is platform agnostic and defines the following:

• Verified boot (also known as Secure boot) is when each SW/FW component is
loaded and cryptographically verified by the previous component, aka a Chain of
Trust. The first component is verified by a HW based Root of Trust. The boot is
terminated if any step in the Chain of Trust fails verification.

• Measured boot is when each SW and FW component is loaded and measured by
the previous component. All measurements are recorded in secured storage, but
not verified. The first component in the process is an exception. First, it is loaded
and verified by a HW based Root of Trust. Second, the component measures itself.
The boot is terminated if this initial verification fails.

• Isolation of the trusted processes.

Depending on the platform architecture and configuration, trusted hardware can enforce
protection of data from unauthorized access, implement cryptographic functionality,
and protect data integrity including cryptographic keys, data measurements, platform
configuration data and system runtime variables.

The combination of hardware, firmware and software that is secured, verified, and trusted
provides the Trusted Computing Base (TCB) for a platform. The TCB enforces the security
policy and provides protection mechanisms from breaching the policy defined restric-
tions, obtaining authorized privileges, and tampering with hardware.

Since edge locations often have lower physical security than either private or public cloud,
this Platform Security Architecture requires an immutable HW based root of trust for all
platform boot types.

The following sections provide a high-level description of verified boot, measured boot,
platform root of trust and platform boot flows.

4.1 Platform Roots of Trust
The Platform Roots of Trust (PRoT) include the hardware and software components
that are responsible for system level security configuration, anchoring the verified
(secure) boot process to establish a chain of trust for the platform, providing trusted
measurements and platform verifiable attestation data.

The Trusted Computing Group (TCG) defines a Root of Trust as a component that
performs one or more security-specific functions, such as measurement, storage,
reporting, verification, and/or update[10]. A RoT is trusted always to behave in the expected
manner, because its misbehavior cannot be detected such as by measurement, by
attestation or observation.

9

There are two architectural types of Roots of Trust: Immutable and Mutable. They differ in
implementation, maintainability, and trust properties. An Immutable RoT is unmodifiable
by owners, administrators, or users after delivery by the RoT manufacturer.

The trust properties for an Immutable RoT are predicated by the RoT hardware and
unchangeable code deployed by the vendor’s manufacturing process. An Immutable RoT
is expected to remain identical across all devices within a set of a device models based on
a defined threat model. It is also expected not to change across time and, therefore, will
behave the same over the device lifespan. An interested party may evaluate a sample of
devices to verify correct behavior then choose to trust the manufacturer not to change
the device’s manufacturing process.

A Mutable RoT is changeable by an authorized entity. The purpose of deploying a Mutable
RoT includes bug and vulnerability fixes and the addition of enhanced features.

The following Root of Trusts are typically included as part of various definitions of a
Platform Root of Trust:

1. Root of Trust for Measurement

• A computing engine capable of making inherently reliable integrity measurements.

• Provides measurements of firmware, software or configuration data that can be
used in attestations by the Root of Trust for Reporting.

2. Root of Trust for Reporting

• A computing engine capable of reliably reporting information held by the Root of
Trust for Storage.

• Manages identities and attestation assertions.

3. Root of Trust for Storage

• A computing engine capable of maintaining an accurate summary of values of
integrity digests and the sequence of digests.

• Protects the confidentiality and integrity of assets by preventing access.

4. Root of Trust for Update

• An ultimate authority for the update of a Mutable RoT.

• Manages the secure firmware and software update procedure.

5. Root of Trust for Verification

• A computing engine capable of verifying data based on cryptographic mechanisms
or against platform specific values provisioned into the platform protected storage.

• Manages integrity of firmware/software and data verification.

10

6. Root of Trust for Recovery

• A computing engine capable of recovering platform configuration to the
well-known state.

• Manages recovery when firmware is corrupted or unusable.

Depending on the platform architecture, additional Root of Trusts can by defined based
the platform needs. The following sections provide examples of the platform Root of
Trust services.

4.2 Platform Verified Boot
Verified Boot (aka. Secure Boot) is the process of verifying and validating the integrity
and authenticity of mutable firmware and software components before their execution.
Depending on the platform implementation, firmware verification can be initiated at
different stages of the boot process. The Verified Boot shall be based on the Root of
Trust of Verification, which shall be anchored to a Hardware Platform Root of Trust or to
immutable platform firmware.

The verification process involves checking firmware integrity using cryptographic
algorithms. This requires the hash value to be calculated over platform firmware images
and metadata. The computed hashes can be verified against cryptographic certificates
or using a hash value protected from modification by hardware and anchored to the
Hardware Root of Trust.

This verification process must be successfully completed before the verified firmware
image can be executed.

Depending on the platform security policy, verification failure may lead to system halt,
recovery of system firmware or starting the system with limited functionality.

Figure 2 illustrates an example of the firmware verification process starting from
immutable platform firmware and implementing a chain of verification for firmware
components.

FIGURE 2 VERIFIED BOOT. CHAIN OF VERIFICATION.

http://#Figure2
http://

11

Figure 3 illustrates an example of the firmware verification process initiated by the first
verified mutable firmware or by trusted hardware, which controls firmware loading and
the verification process.

FIGURE 3 VERIFIED BOOT. VERIFICATION BY TRUSTED ENVIRONMENT.

See Appendix B and Appendix C for the platform specific implementation of Verified
Boot and platform boot flows using Verified Boot.

4.3 Platform Measured Boot
Measured Boot is the process of cryptographically measuring the code and critical data
so that the security state can be attested to later. Measured Boot shall be based on the
Root of Trust of Measurement which shall be anchored to a Hardware Platform Root of
Trust or to immutable platform firmware.

The measurement process includes but is not limited to measuring of platform firmware
binary images, platform configuration data, and boot parameters. Measurement of
platform data is based on cryptographic hashing algorithms and requires trusted
hardware or secure services, for example, implementations that use a TPM can use
Platform Configuration Register (PCR) storage. The platform measurements that are
stored in PCRs represent the platform configuration as a unique number which can be
used for the platform attestation purpose. Appendix A outlines the TCG TPM, though the
system will determine whether such a TPM is required because a TPM is not a mandatory
requirement.

Measured Boot does not affect the platform boot process.

Platform attestation tools can be implemented as part of the OS services as well as the
remote attestation services located on the network.

Measured Boot does not affect the platform boot process.

12

Figure 4 illustrates the firmware measurement process starting from immutable platform
firmware. It builds a unique measurement value by extending the current measurement
in PCR using a measurement of the next firmware image.

FIGURE 4 MEASURED BOOT. EACH FIRMWARE MEASURES NEXT ONE.

Figure 5 illustrates the firmware measurement process starting from immutable platform
firmware. All measurements are done by the first verified mutable firmware or by trusted
hardware that controls firmware loading process. This builds a unique measurement
value by extending (Appendix A) the current measurement in PCR with measurements of
the sequence of the images.

FIGURE 5 MEASURED BOOT. MEASUREMENTS BY TRUSTED ENVIRONMENT.

See Appendix B and Appendix C for the platform specific implementation of Measured
Boot and platform boot flows using Measured Boot.

4.4 Platform Isolation of Trusted Processes
Mechanisms for achieving trusted process isolation on different platforms vary
substantially. Many platforms include system CPU(s) that provide a secure execution
environment isolated and protected from the rest of the system. Other options include
isolation in the system chipset or in a dedicated security chip e.g., TPM or Secure
Element, or an on-chip secure enclave. It is common for a system to utilize more than
one isolation technique.

Verified and measured boot need to be trusted processes because they play a key role in
establishing the root of trust and, optionally, measuring other components and providing
additional services.

13

See Appendix B and Appendix C for the platform specific implementation of isolation of
trusted processes.

4.5 Platform Boot Flows
Platform boot flow is a sequence of processes that are executed during the booting of
a platform. The sequence starts from the immutable firmware and finishes at loading
the platform OS. It may include multiple firmware components which initialize platform
peripheral devices and a system’s internal infrastructure. The sequence depends on the
platform architecture and may vary between different implementations.

The boot flow must be protected from tampering during execution and implement
mechanisms for the detection of platform firmware and software unauthorized
modifications.

Akraino blueprints currently support execution on the multiple type of platforms.
Appendix B and Appendix C provide information about the boot flows on supported
platform architectures and describes security mechanisms for platform firmware integrity
protection.

 

14

5 Questionnaire
The Akraino Platform Security questionnaire provides a set of questions about the
platform hardware, firmware, and host software security. These questions should be used
to assess the level of security implemented by a platform provider and be agnostic to
the platform architecture. Akraino blueprint owners may use it to add additional security
requirements for platforms which will execute an Akraino blueprint. This questionnaire is
intended to be answered by a platform provider.

5.1 Use Cases
The following use cases provide guidance on how to apply the Akraino PSA questionnaire
for different blueprint development and deployment scenarios.

1. Blueprint Creator:

• Blueprint User provides platform for blueprint: the Blueprint Creator can reference
the PSA requirements to serve as additional security requirements that the
Blueprint User should or must comply with to ensure the security of the platform
running the Blueprint.

• Blueprint Creator provides the platform for the blueprint: the Blueprint Creator can
provide a reference to the completed PSA requirements providing evidence to the
Blueprint User that a secure platform is running the Blueprint.

2. Blueprint User:

• Blueprint Users utilize the PSA requirements to meet platform level security
requirements for their specific use of the Blueprint on their provided platform.
Blueprint Users can perform this step even in cases where the Blueprint Creators
do not explicitly reference PSA. In this case, the Blueprint User is responsible for
testing to ensure the Blueprint performs, as expected, with PSA requirements
in place.

• For the public or private cloud execution environment, the Blueprint User may
request a provider to answer the PSA questionnaire for ensuring that provided
platforms implement the required level of security and provide a secure execution
environment.

3. Chip Providers:

• Can utilize PSA requirements to ensure that their offering meets these
requirements. This can provide a potential competitive advantage in the market for
chips that meet PSA requirements.

15

4. Hardware Device Providers (i.e., server, IoT device, etc.) utilizing chips that meet
the Platform Security Requirements of section 5.2 can obtain a potential competitive
advantage in the market for devices that meet PSA requirements.

5. Organizations allowing the use of opensource software can use the PSA requirements
to define additional platform security requirements for Blueprints they will support. PSA
requirements serve to increase the security posture of the organization.

5.2 Platform Security Questionnaire
The platform security questionnaire provides an assessment for the platform security
components based on Immutable Platform Root of Trust and Platform Security Root
of Trust.

QUESTION DETAILS

1

The platform shall provide a hardware
mechanism(s) to isolate the Secure Processing
Environment (SPE) from the Non-secure
Processing Environment (NSPE).

The platform data and
code at different security
levels should be isolated
from each other.

2

The chip shall support Verified Boot, initiated
from code in the immutable Platform Root of
Trust, for:

• All secure-processing environment (SPE)
code, and

• The first mutable code of the Non-
Secure Processing Environment (NSPE)

The platform boot shall
start from a hardware-
based root of trust (hRoT)
and verify next mutable
firmware image.

3

The system shall support either Verified Boot
or Measured Boot (or both) of NSPE code if
initiated by verified boot.

The platform shall use
either verified boot or
measured boot after
verified boot anchored to
the hRoT is complete.

4

(If applicable) The Platform shall support a
security lifecycle, i.e., protecting critical security
parameters and sensitive data based on
device lifecycle state and enforcing the rules
for transition between states. Attestation
reports of the platform should provide the
current lifecycle state of the platform.

The platform with lifecycle
support shall not expose
critical data during the
change of the platform
lifecycle state (e.g., change
from Production state to
RMA/Debug state).

16

QUESTION DETAILS

5

The Platform shall support the storage or
derivation of the following minimum set (or
equivalent) of critical security parameters:

• A Platform RoT Public Key (ROTPK), or
hash of, used for authenticating the first
updateable firmware component code
during secure boot.

If defined by the Platform:

• A secret Hardware Unique Key (HUK),
used for deriving other device secrets.

• A secret attestation key and identifier that
uniquely identifies the attestation key.

• An identifier that uniquely identifies the
Platform Security RoT on the chip.

The platform shall
support storage of
unique keys used for
different platform security
operations (e.g., verified
boot, attestation, etc.).

6

The Platform Security RoT shall support secure
update of firmware and any Application RoTs.
Updates may be delivered either from locally
connected devices (such as removable media)
or from remote servers.

The platform shall
implement a secure
firmware update
mechanism.

7

The update mechanism shall prevent unautho-
rized rollback of updates. A mechanism may
be provided to support authorized rollback
for recovery reasons. Anti-rollback is strongly
recommended but not mandatory in PSA.

The platform shall
be protected from
unauthorized rollback of
firmware.

8

The Platform Security RoT shall protect
unauthorized modification of platform security
parameters, system software, and device
sensitive data. The Platform Security RoT may
enforce authorized access to platform security
parameters, system software, and device
sensitive data.

The platform security RoT
shall be used to protect
and authorize access to
platform sensitive data
(e.g., the platform RoT
public key).

9

The Platform Security RoT shall use best
practice cryptography (algorithms, key, and
hash sizes, etc.) for protection of its assets.
This includes the provision of a suitable source
of random data with hardware based RNG.

The platform shall
always use best practice
cryptography. The best
practice may depend on
the region or country.

17

5.3 System Software Security Questionnaire
The table below provides additional details for the System Software Security Questions

QUESTION DETAILS

1

The System Software shall be updatable
either from locally connected devices
(such as removable media) or from
remote servers.

It is expected that security
related fixes will be required
during the system lifetime and
hence this requirement that
assumes that System Software
updates are verifiable.

2

(Optional) The update mechanism shall
prevent unauthorized rollback of system
software and authentication data. A
mechanism may be provided to support
authorized rollback for recovery reasons.

A system software rollback
should be either prohibited or
authorized.

3

The System software shall rely only on the
Platform Security RoT for all queries of the
Platform Security RoT identity(s).

Here are two use case
examples:

• An ID is directly based
on platform RoT e.g., KF
Edge FDO project uses
TPM for establishing
platform identity.

• An ID is SW defined.
In such cases, the
platform RoT should be
used to protect against
unauthorized accesses to
this ID e.g., by using LUKS
disk encryption with the
key stored in the TPM.

4

The System software shall use secure
storage to protect sensitive data and
provide this functionality for application
data. If supported, it shall seal the
sensitive data in a specific device instance
and include the security lifecycle state.

An example is using data
sealing with the encryption
key stored in the TPM and
protected with the Extended
Authorized Policy.

Another example is LUKS disk
encryption, with the key stored
in the TPM.

One more example is platform
services running in a trusted
environment.

18

QUESTION DETAILS

5

The System Software shall use best
practice cryptography (algorithms, key,
and hash sizes, etc.) for protection of
its assets. This includes the provision of
a suitable source of random data with
hardware based RNG. There should be
no reliance on proprietary cryptographic
algorithms or customization of standard
cryptographic algorithms.

An appropriate industry
best known practice for
cryptography must be
followed.
These practices are
changing over time and may
differ between different
geographies.
It is a responsibility of the
blueprint owner to select
and indicate an appropriate
source.

6

System software shall provide the ability
to authenticate remote devices and
servers when establishing a two-way
connection to support data integrity,
confidentiality, or authenticity

Examples are:
• mTLS
• LF Edge FDO channel
established according to TO2
protocol

7
The system software shall provide the ability
to encrypt and enforce integrity of data
exchanged with remote devices and servers.

Examples are the same as for
#6 above

8

The System software shall use secure
protocols for authentication and
protection of two-way communication.
These protocols shall not leak data that
would lead to the identification of the
devices.

TLS is an example of an
acceptable protocol.

9

(Optional) Functionality packages that are
not needed for the intended use shall not
be installed or shall be disabled if non-
installation is not practical.

If an OS or UEFI packaged is
not used by the blueprint (and
it is practical to remove), it is
recommended to remove this
package from the installation
to prevent its possible misuse.

10

The system software shall support an
attestation method that can be used
to prove the genuineness of the device
and its integrity. If possible, the current
security lifecycle state of the device should
be included.

End-to-end support for
the measured boot and
corresponding platform
attestation with the assistance
of a software agent.

The platform should have this
capability, but its enabling is at
the discretion of the system
user and/or blueprint developer

19

QUESTION DETAILS

11

The system software should provide
logging of relevant security events and
errors. The log should include sufficient
details for root cause analysis and should
be protected from unauthorized access.

Security logging is critical for
the investigation of incidents
and auditing. What to log
is at the discretion of the
system user and/or blueprint
developer.
Using disk encryption (e.g.,
LUKS) is an example of log
protection

12

Where supported, the system software
shall enable the execution of application
specific software and system software
with the lowest level of privileges
necessary for the intended function.

The OS (e.g., Linux) shall not
be used without the accounts
and/or privileges set to least
privilege levels and Blueprint
owners must also use least
privilege levels for their
components and users.

13

If the system software has a mechanism
to reset authentication and authorization
parameters, they shall not be resettable
to any universal factory default value.
Such data must not be easily determined
by automated means or obtained from
publicly available information.

The system software
should have a secure
mechanism for a user to reset
authentication parameters.
The implementation of this
mechanism and can be based
on different recovery processes,
such as a system reset requiring
entering a password, email
response verification, security
questions, etc.

14

If the system software makes use of
cryptographic algorithms for user
authentication, the cryptography used
for that feature shall comply with
requirement #5 in the System Software
Security section.

The system may use
different methods for user
authentication like certificates
(e.g., SSH access), smart cards,
authenticators, etc.

15

If the System software allows persistent
storage of data, it shall support
protection against unauthorized access
and mechanisms for access rights
management.

System may define different
user access rights to the data
on the platform storage or
TPM Extended Authorization
policies.

20

6 Conclusion
Platform Security provides the tools necessary to extend security for Akraino Blueprints
all the way down to the hardware level. Akraino Platform Security takes a vendor agnostic
approach and attempts to focus on fundamental Platform Security areas that all vendors
should support. By implementing the Platform Security requirements defined, the Akraino
Blueprint user can be assured that (1) the hardware/firmware running their software
is free from known malware, (2) a secure area to store platform security sensitive keys/
passwords/information is provided, (3) the secure update of firmware is ensured, and (4)
the integrity of the system firmware is maintained.

In summary, by implementing Akraino Platform Security, Blueprint owners can be assured
that they are taking advantage of available platform security tools to ensure their Akraino
Blueprint is running on a secure platform.

21

Appendix A
This appendix describes platform independent implementation of security modules
and devices.

A.1 TPM as a Root of Trust for Measurements
and Reporting
TCG (Trusted Computing Group) is an industry organization that published a specification
defining a Trusted Platform Module (TPM). The currently defined version (or family) is TPM
2.0. Use of a TPM depends upon each specific implementation and is not a mandatory
requirement for an Akraino platform.

The TPM spec defines multiple capabilities. Two of them are of primary interest for the
measured boot:

TPM serves as a Root of Trust for Storage (ROTS)

• The measurements are stored in Platform Configuration Registers (PCRs).

• On each TPM boot, all PCRs are reset to an initial value.

• The only way to change a PCR value is by “extending” it. Extending means that the
TPM calculates a hash value of the current PCR value concatenated with a new
measurement value, typically a hash of the code or data, and stores the new hash
value in the PCR. The symbol “||” below means concatenation:
 PCR(new) = HASH (PCR(old) || measurement(new))

• The TPM specifications defines multiple hashing algorithms.

• If a platform extends a PCR multiple times, all data is hashed into the PCR.
Extending measurements in a different order will produce a different PCR result
value.

• After the measured boot is done each PCR holds a final value that is a product of all
extend operations performed by the TPM for this PCR during the measured boot.

• The TPM also serves as a Root of Trust for Reporting (ROTR). It can produce a signed
quote (aka measurement boot report) in a response from a boot verifier. The quote
among many other parameters contains the PCR values. There is also a TCG SCRTM
(Static Core Root of Trust for Measurement) event log of all completed extend
operations. The verifier may request the log and “replay” it as needed. Below is a quote
signing key chain:

• A TPM comes with an asymmetric Endorsement Key (EK) provisioned during its
manufacturing process. The EK private part is known to the TPM only. The EK public
part is included in the certificate issued by the TPM manufacturer. The certificate is
signed by the manufacture CA signing key.

22

• A platform owner instructs the TPM to generate an asymmetric Authentication Key
pair (AK). The AK private part is known to the TPM only and the public part is signed
by the EK.

The AK is used to sign the TPM quote. The EK is not used directly for signing the TPM
quote due to privacy considerations.

23

Appendix B
This appendix describes Intel specific security models and boot flows.

B.1 Intel Platform Security Model
B.1.1 Measured Boot Support on x86 Platforms

A diagram below depicts verified boot and measured boot concepts side-by-side.

FIGURE 6 VERIFIED BOOT AND MEASURED BOOT SIDE-BY-SIDE.

B.1.2 Immutable RoT Support on x86 Platforms

Historically, x86 based platforms would often utilize a boot ROM/FLASH as a root of trust
for the firmware verification, measurement, update, and recovery. This approach doesn’t
provide an immutable root of trust and consequently doesn’t satisfy Akraino Platform
Security requirements.

Fortunately, modern x86 based systems are typically shipped with HW-based security
capabilities that satisfy Akraino Platform Security requirements. An OEM can utilize
appropriate CPU/SoC features to deliver an end-to-end security solution for x86 based
system e.g., the table below maps root of trust types to Intel® provided features.

24

Root of Trust Intel® Boot Guard Intel® Bios Guard Intel® PFR

Verification Yes
(CPU/ACM) - Yes

(PFR CPLD)

Measurement Yes
(CPU/ACM) - Yes

(PFR CPLD)

Storage
Yes

(TPM/PCR) - Yes
(TPM/PCR)

Reporting Yes
(TPM/EK and AIK) - Yes

(TPM/EK and AIK)

Firmware
Update - Yes

(SMM and ACM)
Yes

(PFR CPLD)

Firmware
Recovery - - Yes

(PFR CPLD)

ACM – Authenticated Compute Module is executed in a special mode as a part of the
immutable root of trust (in conjunction with CPU microcode)

CPLD – Complex Programmable Logic Device. The CPLD is the root-of-trust in a system that is
designed based on the Intel® PFR.

TPM – Trusted Platform Module

Section “Platform Boot Flow with Intel® Boot Guard” later in this document describes in
detail how Intel® Boot Guard is used for measured and secure boots.

B.2 Intel platforms boot flow

B.2.1 Platform Boot Flow with Intel® Boot Guard

Intel® Boot Guard is an example of the HW based Root of Trust in the case of verified
boot and an example of Root of Trust for Measurements in the case of measured boot. A
platform boot starts with:

• Intel Server Platform Services, executing in the chipset, that reads the OEM
Boot Policy

• CPU Microcode that authenticates Intel® Authenticated Code Module (ACM) binary.

• Intel® ACM that verifies the OEM provided Initial Boot Block (IBB).

25

Boot Guard relies on PCH (Platform Controller Hub) Field Programming Fuses (FPFs) to
store the hash value of the OEM public key and Boot Guard boot policy. The FPFs can be
programmed only once, and the OEM does it during the platform manufacturing process.

The ACM performs critical tasks in the Boot Guard solution. It is digitally signed by Intel
and stored on the flash together with BIOS and other firmware components. The public
key for verifying the signature of the ACM is hard coded in Intel’s CPU. The CPU opcode
loads the ACM in the internally protected L2 cache, called ACRAM (Authenticated Code
RAM), which then verifies the ACM and, only in the case of successful verification, the CPU
allows the ACM to execute. ACM is required to execute successfully when Boot Guard is
enabled; failure to authenticate ACM results in a CPU shutdown.

The ACM loads an Initial Boot Block (IBB) provided and signed by the OEM. The IBB is a
Boot Guard specific requirement for the OEM; typically, this includes silicon and memory
initialization FW. The reason is to provide a small module that can be quickly measured by
the ACM in the internally protected memory. The ACM loads the IBB into last-level cache
and enables No-Eviction Memory, to create a secure, isolated environment for the BIOS
code to run. ACM then verifies the IBB signature using the OEM Boot Guard key store in
the FPF. Only after a successful verification will ACM transfer control to the IBB. Failure to
verify IBB results in the CPU being shut down through SPS enforcement.

A diagram below depicts the Boot Guard ACM and IBB execution flow.

FIGURE 7 INTEL® BOOT GUARD CONCEPT

A diagram below depicts a simplified verified boot flow with Intel® Boot Guard serving as
an immutable HW-based verification root of trust.

26

FIGURE 8 VERIFIED BOOT EXAMPLE

After the system resets, the CPU loads and verifies the ACM which loads and verifies the
IBB as described in the previous section. The integrity enforcement of the subsequently
loaded components is performed by a chain of trust. The following components
(in green) are provided by the OEM and each component must load and verify a
subsequent component before transferring control to it. A hash or a digital signature
can be used to ensure the data integrity during the load and verification process. If the
verification fails, the boot process is terminated. Each arrow in the diagram depicts this
“load-and-verify-before-execute” pattern. Ultimately, the system loads and verifies OS/
VMM provided by the OSV.

The verified boot may be combined with the measured boot. Refer to section B.2.3 on
how the verified boot may fit into a bigger picture.

B.2.2 Measured Boot Flow with Intel® Boot
Guard and TPM
The measured boot differs from the verified boot. In the verified boot, each component
authenticates and cryptographically verifies the next component. The verified boot
terminates in case of any authentication or verification failure. In the measured
boot, one component measures the next component into a TPM PCR before loading
the following component. The measured boot won’t fail because no verification is
performed during the boot. This boot sequence is called a Chain of Trust (COT). There is
one exception related to execution of the first two FW components (ACM and IBB) in the
boot flow as discussed later in this section.

27

A diagram below depicts a simplified measured boot flow that uses Intel Boot Guard as a
root of trust for the measurements and TPM as a root of trust for the storage
and reporting.

FIGURE 9 MEASURED BOOT EXAMPLE.

The measured boot starts by executing the Boot Guard ACM and IBB as defined in
section B.2.1. The boot terminates if either the ACM verification by the CPU opcode or
IBB verification by the ACM fails. The arrows between the CPU and the ACM and ACM
and IBB represents the verified boot behavior even though (the rest of) the platform is
configured for the measured boot (notice “Load and Verify” text instead of “Load and
Measure” for other blue arrows). Additionally, the ACM extends its self-measurements
into the TPM PCR0 in addition to the IBB measurements. Then the IBB and each
subsequent component (except the last one) in the Chain of Trust load and measure the
next component. The Chain of Trust extends all measurements into the corresponding
TPM PCRs according to the TCG Platform Firmware Profile Specification.

As memory is not available at reset, ACM relies on verified BIOS to determine if Boot
Guard is enabled and generate the first events for the TPM event log: the event log
header, locality startup event, and SCRTM events must be created before any further
events are logged by BIOS, to ensure event log replay succeeds.

After the measured boot is completed, the platform is considered trusted, but not
necessarily secure e.g., the PCR values may indicate a known vulnerability in one of the
components. It is up to other software (called a Verifier on the diagram above) to make a
security decision based on the TPM quote and, optionally, the corresponding boot log. The
Verifier must trust only the TPM (quote). The TPM Agent on the Target Platform facilitates
access to the TPM, but it is not trusted because it runs as a regular OS process or system
service regardless of the system trust status and before it is known. For example, one of

28

the implications is that the Verifier itself must generate a one-time nonce which is sent to
the TPM for an inclusion in the quote to mitigate possible quote replay attacks.

B.2.3 Measured and Verified Boot

The previous sections described verified boot and measured boot in isolation, but in the
real world they can be joined into a combined measured and verified boot. There are
good reasons for such a combination:

• To catch configuration (aka user) errors, e.g., the platform is booted with a signed
OS kernel, but the kernel has an incorrect version.

• To detect booting of an older, but still formally valid and signed, firmware that may
have vulnerabilities.

• To distinguish between normal and recovery boot modes if the platform has an
ability to boot in the recovery mode in cases when the verification boot fails.

The verified boot and/or measured boot is not used alone for protecting the platform,
but in a combination with additional software for applying appropriate policies e.g.,

• Disk encryption software may use a disk encryption key sealed in the TPM.A
combination of the TPM PCR values is configured as a TPM Extended
Authentication Policy. The key is released only if the current TPM PCR state
matches the policy. E.g., LUKS can be configured in such way.

• Kubernetes (K8S) POD execution policy enforcement. An external Hardware
Verification Service (HVS) retrieves a platform TPM quote and verifies it. The HVS
verification result is used to decide if the platform can be allowed to execute
K8S pods.

• Restricting access to external resources like network devices or storage based on
platform measurements.

29

Appendix C

C.1 Arm Platform Reference Boot Flow
The following section describes the boot flow and platform firmware verification
sequence for the platform firmware reference implementation provided by Arm [6]. The
firmware boot flow may be adjusted by the OEM/ODM or SiP depending on the platform
configuration and requirements. However, the security requirements for platform
firmware should not be affected by the platform vendor boot flow adjustments.

C.1.1 Trusted Boot

The Trusted Board Boot (TBB) [1] feature prevents malicious firmware from running on
the platform by authenticating all firmware images up to and including the normal world
bootloader. It does this by establishing a Chain of Trust using Public-Key-Cryptography
Standards (PKCS).

C.1.2 Chain of Trust

A Chain of Trust (CoT) starts with a set of implicitly trusted components. In the Arm
reference implementation, these components are:

• A SHA-256 hash of the Root of Trust Public Key (ROTPK), see [3] and [5].It is stored in
the trusted root-key storage registers.

• The BL1 image, on the assumption that it resides in ROM so it cannot be
tampered with.

The remaining components in the CoT are either certificates or boot loader images. The
certificates follow the X.509 v3 standard. This standard enables adding custom extensions
to the certificates, which are used to store essential information to establish the CoT.

The certificates are categorized as “Key” and “Content” certificates. Key certificates are
used to verify public keys which have been used to sign content certificates. Content
certificates are used to store the hash of a boot loader image. An image can be
authenticated by calculating its hash and matching it with the hash extracted from the
content certificate.

C.1.3 Execution and Security states

The current state of an Armv8-A or Armv9-A processor is determined by the Exception
level [2] and the current Execution state. The current Execution state defines the standard
width of the general-purpose register, and the available instruction sets.

30

Execution state also affects aspects of the memory models and how exceptions are
managed.

The current Security state controls which Exception levels are currently valid, which areas
of memory can currently be accessed, and how those accesses are represented on the
system memory bus.

Figure 10 shows the Exception levels and Security states, with different Execution states
being used.

FIGURE 10 ARMV8-A AND ARMV9-A EXCEPTION MODEL.

C.1.4 Trusted Board Boot Sequence

A boot sequence may contain multiple steps and may load multiple images of firmware.
The Arm reference implementation [6] defines five boot stages, called Boot Loader (BL),
which loads specific pieces of firmware:

• Boot Loader stage 1 (BL1) AP Trusted ROM.

• Boot Loader stage 2 (BL2) Trusted Boot Firmware.

• Boot Loader stage 3-1 (BL3-1) EL3 Runtime Firmware.

• Boot Loader stage 3-2 (BL3-2) Secure-EL1 Payload (optional).

• Boot Loader stage 3-3 (BL3-3) Non-trusted Firmware.

The CoT is verified through the following sequence of steps illustrated in Figure 11. The
system stops booting or switches to recovery mode if any of the steps fail.

• BL1 loads and verifies the BL2 content certificate. The issuer’s public key is read
from the verified certificate. A hash of that key is calculated and compared with the
hash of the ROTPK that is read from the trusted root-key storage registers. If they
match, the BL2 hash is read from the certificate.

31

• BL1 loads the BL2 image. The BL2 hash is calculated and compared with the hash
read from the BL2 content certificate. Control is transferred to the BL2 image if all
the comparisons succeed.

• BL2 loads and verifies the trusted key certificate. The issuer’s public key is read
from the verified certificate. A hash of that key is calculated and compared with
the hash of the ROTPK that is read from the trusted root-key storage registers. If
the comparison succeeds, BL2 reads and saves the trusted and non-trusted world
public keys from the verified certificate.

The next two steps are executed for each of the SCP_BL30, BL31, & BL32 images.
The steps for the optional SCP_BL30 and BL32 images are skipped if these images
are not present.

• BL2 loads and verifies the BL3x key certificate. The certificate signature is verified
using the trusted world public key from the trusted key certificate. If the signature
verification succeeds, BL2 reads and saves the BL3x public key from the certificate.

• BL2 loads and verifies the BL3x content certificate. The signature is verified using
the BL3x public key. If the signature verification succeeds, BL2 reads and saves the
BL3x image hash from the certificate.

The next two steps are executed only for the BL33 image.

• BL2 loads and verifies the BL33 key certificate. If the signature verification
succeeds, BL2 reads and saves the BL33 public key from the certificate.

• BL2 loads and verifies the BL33 content certificate. If the signature verification
succeeds, BL2 reads and saves the BL33 image hash from the certificate.

The next step is executed for all the boot loader images.

• BL2 calculates the hash of each image. It compares it with the hash obtained from
the corresponding content certificate. The image authentication succeeds if the
hashes match.

FIGURE 11 TRUSTED BOOT FLOW.

32

C.1.5 Measured Boot and Attestation

An SoC may need to prove the integrity of its software to a remote party or to local
systems on the same board. A prerequisite for attesting the platform state is to
create measurements of loaded code and data on each boot. The measurements are
then securely stored in a trusted subsystem. This is known as a measured boot. The
measurement report provided to local or remote attestation mechanisms can be used to
assess the integrity of such firmware and makes it part of an overall chain of trust.

Each stage of the chain of trust accurately and robustly measures all the critical code and
data that will be loaded. This also includes:

• Loadable modules (including dynamic patches and code loaded from peripherals)

• Parameters that influence boot behavior (for example, flags or variables that may
change the control flow of the loaded program).

Each stage of the chain of trust stores the measurements in a local root of trust. The
measurements may be held in a security module or in other types of trusted subsystems
(e.g., TPM, Appendix A). A remote party can use the list of measurements to help validate
the specific software identity of the platform.

The immutable bootloader can store a boot state that is accessible by the RoT runtime
services. Part of the boot state includes a freshly generated number called a boot seed.
The boot seed may be used by later services, for example to allow a validating entity to
ensure that attestations for different attestation end points were generated in the same
boot session. It must be large enough to make global collisions statistically improbable.

It is possible for systems to provide multiple images in the form of a signed firmware
image package or a single image. A firmware image package allows for packing
bootloader images (and potentially other payloads) into a single archive that can be
loaded. Nevertheless, each component must be measured independently. This is
necessary for a remote party to easily verify a remote attestation.

 

33

References
[1] Trusted Board Boot Requirements: https://developer.arm.com/documentation/
den0006/latest

[2] AArch64 Exception Model: https://developer.arm.com/documentation/102412/0102

[3] Platform Security Model: https://www.psacertified.org/app/uploads/2021/12/JSADEN014_
PSA_Certified_SM_V1.1_BET0.pdf

[4] Platform Threat Model and Security Goals: https://www.psacertified.org/development-
resources/building-in-security/platform-threat-model-and-security-goals

[5] Platform Security Boot Guide: https://developer.arm.com/documentation/den0072/0101/

[6] Arm Trusted Firmware for A-class processors: https://www.trustedfirmware.org/projects/tf-a/

[7] PSA Certified Level 1 Questionnaire: https://www.psacertified.org/app/uploads/2022/06/
JSADEN001-PSA_Certified_Level_1-2.2-REL-01.pdf

[8] Intel HW Shield (including Intel(R) Boot Guard): https://www.intel.com/content/dam/www/
central-libraries/us/en/documents/below-the-os-security-white-paper.pdf

[9] Secure Boot with Intel(R) Boot Guard in context of Network Infrastructure: https://builders.intel.
com/docs/networkbuilders/secure-the-network-infrastructure-secure-boot-methodologies.
pdf

[10] TCG Glossary: https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-
V1.1-Rev-1.0.pdf

Authors

Daniil Egranov (Arm Ltd.)

Eugene Yarmosh (Intel)

Randy Stricklin (AT&T

Contributors

Catharine West (Intel)

Don Banks (Arm Ltd.)

Rob Smart (Arm Ltd.)

https://developer.arm.com/documentation/102412/0102
https://www.psacertified.org/app/uploads/2021/12/JSADEN014_PSA_Certified_SM_V1.1_BET0.pdf
https://www.psacertified.org/app/uploads/2021/12/JSADEN014_PSA_Certified_SM_V1.1_BET0.pdf
https://www.psacertified.org/development-resources/building-in-security/platform-threat-model-and-security-goals
https://www.psacertified.org/development-resources/building-in-security/platform-threat-model-and-security-goals
https://developer.arm.com/documentation/den0072/0101/
https://www.trustedfirmware.org/projects/tf-a/
https://www.psacertified.org/app/uploads/2022/06/JSADEN001-PSA_Certified_Level_1-2.2-REL-01.pdf
https://www.psacertified.org/app/uploads/2022/06/JSADEN001-PSA_Certified_Level_1-2.2-REL-01.pdf
https://www.psacertified.org/app/uploads/2022/06/JSADEN001-PSA_Certified_Level_1-2.2-REL-01.pdf
https://www.psacertified.org/app/uploads/2022/06/JSADEN001-PSA_Certified_Level_1-2.2-REL-01.pdf
https://builders.intel.com/docs/networkbuilders/secure-the-network-infrastructure-secure-boot-methodologies.pdf
https://builders.intel.com/docs/networkbuilders/secure-the-network-infrastructure-secure-boot-methodologies.pdf
https://builders.intel.com/docs/networkbuilders/secure-the-network-infrastructure-secure-boot-methodologies.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf

34

