
WHITE PAPER:

Akraino APIs

Table of Contents

Introduction 1

Developer Edge APIs 2

Edge Orchestration APIs 3

Developer and Application Onboarding Workflow 3

Application Discovery Engine (ADE) APIs 4

Client-Side APIs 5

Blueprints and Integrations with 6
other LF Edge projects

Glossary 7

3

Introduction

Edge computing is distributed computing with different application components
interconnected by a network. Most applications we use are distributed: a smartphone
with a cloud backend, a Nest Thermostat connected to the cloud, an Apple Watch
connected to an iPhone and then to the cloud. We think of the “edges” as where these
application bits run.

The obvious, existing edges are the “smart device” edge (e.g., the smartphone, the
thermostat) and the public cloud. The simple value of the Internet edge is that we can
do lots of things in the cloud that don’t make sense on a device (the cloud resources
are practically unlimited; the device resources vary limited as long as the connection
is adequate; the collective behavior can be configured, tracked and managed from all
devices). The limitations of the public cloud are the location of the data centers and the
fact that the resources are shared.

The newest is the telecom/5G edge — services delivered within the global telecom/
mobile infrastructure. It is usually a service, like the public cloud (although there are
a growing number of private cellular systems with “premises” like values), it’s more
secure and private than the public cloud (because of differences between the Internet
and cellular systems). And it leverages the massive trillion-dollar existing investment
which already has hundreds of thousands of “edge” computers in place.
The challenges across Service Provider edge projects relate to distributed workloads
processing and possibly mobility. Please refer to Linux Foundation Architecture white
paper for more details on Service Provider edge.

What we need is an end to end service creation framework where the developers can
write new edge applications: a software development and deployment platform which
offers an open API Library for any developer to discover and consume the services the
edge has to offer. We can learn from cloud models today how to develop, orchestrate
and manage workloads/applications and offer developers similar continuous delivery
(CD) pipeline functionality. Not to say that as devices and machines come online all the
needs will be met, but at least it provides a framework to look at.

Akraino is a set of open
infrastructures and
application blueprints for the
Edge, spanning a broad variety
of use cases, including 5G, AI,
Edge IaaS/PaaS, IoT, for both
provider and enterprise edge
domains. These Blueprints
have been created by the
Akraino community and focus
exclusively on the edge in all
of its different forms. What
unites all of these blueprints is
that they have been tested by
the community and are ready
for adoption as-is, or used as a
starting point for customizing a
new edge blueprint.

DESIGN PRINCIPLE

Akraino follows a holistic
design focused on availability,
capacity, security, and
continuity.

• Finite set of
 configurations – In order
 to reduce complexity, the
 design will follow a finite
 set of configurations.
• May support multiple
 workloads types such as
 VMs, Containers, micro
 services, etc.,
• Security – The design
 needs to validate the
 security of the blueprint.
• Autonomous, turn-
 key solution for service
 enablement
• Platform, VNF and
 application assessment
 and gating – assess
 whether the application is
 fit to run at the edge (e.g.
 latency sensitiveness,

1

In principle whoever is developing a solution for edge will appreciate resources
scaling desired to address power limitation near the far edge Service Provider Radi-
os. Hence the dynamic workload, specialized resources for acceleration, server less
models are emerging in most of the Akraino Blueprints. Over last year we learned
a few use cases, but we would like to elevate one of them amongst the pandemic
unrest we are facing. China showed the world containment strategy by running
workloads on 5G edge: predicting infected patients using a combination of facial
recognition and advanced ML at edge.

In the near future we would like to present one of them, facial recognition utilizing
open sourced TensorFlow, as use case for 5G/Edge along with the Architecture and
APIs for continued learning in the community to develop open APIs for the next
generation of developers to write applications for the next generation of internet,
the 5G edge.

This paper is the first attempt to make available a generic set of edge APIs available
for developers used to cloud native applications. As new infrastructure and Akraino
blueprints evolve, there will be further revisions to these APIs.

Developer Edge APIs
This API set details a comprehensive Service Provider edge discovery and mobility
requirements for commercial applications to operate across distributed sites.
Device side APIs allow the control exchange to the Application Discovery Engine,
from the client device, to register and find the nearest best compute instances to
deliver the content.

Thus, we have bucketed API sets shown above under edge orchestration APIs and
Application Discovery APIs which coordinate with Client-side APIs.

BUILD PRINCIPLE

The Akraino blueprints are
built to scale
in a cost-effective way.
• Low latency placement
 and processing to support
 edge drivers.
• Plug & play modular
 architecture –building
 blocks using multiple cloud
 management technologies.

RUN PRINCIPLE
 By focusing on the
uniqueness that is the
edge, Akraino focuses on
building infrastructure and
applications that have:
• Zero-touch provisioning,
 operations, and lifecycle –
 which in turn reduces
 OpEx
• Automated maturity
 measurement –
 operations, designs,
 and services.

COMMUNITY
PRINCIPLES
The Akraino community
has worked together to
provide shared resources
to the developers and open
source participants to ease
development across the
different hardware platforms
and architectures.
• Organization and oversight
 of the Community Lab
• Community sponsored
 hardware well aligned to
 the Akraino blueprints and
 design philosophies

2

Edge Orchestration APIs
The Edge Orchestration APIs enable developers to define privacy, acceleration, and the
Quality of Experience demands their applications may encounter declaratively with the
cross cloud-native structure they require. For the Service Provider edge we structured
two views.

We have bucketed the edge orchestration APIs under two categories, Application Devel-
oper and Resource provider. As application developers need to evolve around not only
deploying their workload on edge, but also needs for security and Role- based Access
Controls. The resource provider needs related to auto onboarding of Infrastructure and
managing their edge DCs, called cloudlets, and defining size of their offering via Flavors
for developers to choose.

For Operator-related API, please visit the following link: https://api.akraino.org/#tag/Cloudlet

Developer and Application Onboarding Workflow
The onboarding workflow above defines orchestration of edge applications and pro-
vides several services to both application developers and operators. For application
developers, these APIs allow the management and monitoring of deployments for edge
applications. For infrastructure operators, these APIs provide ways to manage and
monitor the usage of cloudlet infrastructures. Both developers and operators can take
advantage of these APIS to manage users within the organization.

https://api.akraino.org/#tag/Cloudlet

3

If you prefer to manage these services programmatically, the available APIs and their
resources are accessible from the right navigational menu at links mentioned below:

For Auth and User Management Please follow these links:
 Authentication: https://api.akraino.org/#tag/Security
Role Based Access Control:
Organization: https://api.akraino.org/#tag/Organization
Developer: https://api.akraino.org/#tag/User

For more details on APIs definitions related to app lifecycle management, please follow
the links below for edge app deployment:

Create Cluster - Microservices deployed as a set of containers or VMs:
https://api.akraino.org/#tag/Cluster-Instance

Create App Manifest - Define app mobility strategy: QoE, Geo store | Privacy policies:
https://api.akraino.org/#tag/Application

Create App Instance: Launch application backend and auto scale:
https://api.akraino.org/#tag/Application-Instance

Application Discovery Engine (ADE) APIs
The primary function of the ADE is to match an end-user with an application instance.
The matching process is initiated once the end user’s device registers via SDK (https://
api.akraino.org/device/#operation/RegisterClient). The ADE receives this API call,
searches an inventory of application instances, and enables the end-user device to
establish an encrypted communication channel with the closest instance. If the user is
connecting via a 4G LTE or 5G network, then the ADE is capable of validating the legiti-
macy of the subscriber and their network access permissions through integration with
the network operator’s operations and billing infrastructure.

As the promise of edge is ultra-low latency, the Service Provider edge will have to pro-
vide a deterministic way to measure and enforce quality of experience based on appli-
cation needs primarily being latency, bandwidth. Assuming the above promise it entails
embedding ADEs across operators which not only records the application backends

https://api.akraino.org/#tag/Security

https://api.akraino.org/#tag/Organization
https://api.akraino.org/#tag/User

https://api.akraino.org/#tag/Cluster-Instance

https://api.akraino.org/#tag/Application

https://api.akraino.org/#tag/Application-Instance

https://api.akraino.org/device/#operation/RegisterClient
https://api.akraino.org/device/#operation/RegisterClient

4

nearness, but also health and QoE/App across all edge sites within a region, and offers
a control API to fetch the best location and tune the application back-end to deliver the
best experience.

The Control API from the discovery engine returns the ranked list of Uniform Resource
Identifiers (URIs) identifying application back-end within sites nearby.

URI selection Criteria:

• App instances in sites Geolocated based on Clients location
• URI rank based on recent L4 QoE (Latency, Bitrate) measurements
For more information on definition of this control API, please visit:
https://api.akraino.org/device/#operation/FindCloudlet

Location verification relies on calls to APIs provided by telecom operators, and the
availability and accuracy of location data will vary from operator to operator. Additional
parameters, such as application subscription and service contracts among the mobile
network operators, can be taken into account during the matching process.
https://api.akraino.org/device/#operation/VerifyLocation

Client-Side APIs

https://github.com/mobiledgex/edge-cloud-sampleapps

The link above provides sample apps along with a set of SDKs and Libraries containing
a collection of operations and resources that assist in registering and discovering the
best application instance running on a Service Provider edge cloud.

Application Discovery Engine SDKs and Libraries are available in different languages
and platforms, which include Android, Unity, and iOS, allowing for easy application
development.

The Performance Metrics API, provided with each SDKs, tracks the average latency
characteristics of the edge network. To take advantage of this API, you must add your
application server’s Application Instance to a list of sites in order to periodically
monitor them.

https://api.akraino.org/device/#operation/FindCloudlet

https://api.akraino.org/device/#operation/VerifyLocation

https://github.com/mobiledgex/edge-cloud-sampleapps

5

Blueprints and Integrations with other
LF Edge projects
Figure below shows how these APIs are related to Akraino blueprints.

Akraino R1/R2 blueprints offer a rich set of APIs for a variety of Edge use cases such as
AR/VR, Connected Car, IoT Gateways, SD-WAN to name a few. These APIs include APIs
for Edge deployment automation, configuration management, life cycle management
as well as APIs to support SD-WAN, AR/VR, Connected Car, Provider Edge and Telecom
Appliance use cases. Besides, Akraino Feature projects such as Regional Controller,
Backup & Restore, CHOMP and Blueprint Validation provide support for Orchestration
APIs, backup and restore APIs, Cluster Health and Overload Monitoring APIs, and Test
Automation APIs.

The API framework shown in the figure above can integrate Infrastructure APIs as well
as APIs from network services like SCEF and NEF from the 3GPP Mobile Core. Further,
as public cloud providers deploy their edge instances, Akraino APIs can provide many
value-added services. The need to interface and exchange information through these
APIs will allow competitive offerings for consumers, enterprises and vertical industry
user segments.

The API Aggregation and Management layer will be implemented as a Feature project in
R3/R4 releases. This will ensure all Akraino blueprints will comply with these APIs.

6

Glossary

 Abbreviations Description

API Application Programming Interface

5G 5th Generation Mobile Network

IoT Internet of Things

GPU Graphic Processing Unit

QoE Quality of Experience

UE User Equipment

AR Augmented Reality

VR Virtual Reality

DC Data Center

IAAS Infrastructure as a service

PAAS Platform as a service

SAAS Software as a service

Application Backend

Software written by a developer that interacts with an
end user’s device, such as a mobile smartphone, aug-
mented reality glasses, autonomous vehicle, or other
such devices.

Application Instance A single deployment of an application backend

Cloudlet

A point of presence for application deployment that is
composed of compute, networking and storage infra-
structure. Cloudlets within public telecom operators’
networks are often provisioned on top of servers and
a virtual infrastructure layer managed by the operator;
and interface with the operator’s business and operations
support systems.

7

 Abbreviations Description

Cluster Instance

A Kubernetes cluster with one or more container run-
time instances operating inside of it. To provide robust
isolation between users, Kubernetes clusters are provi-
sioned within separate virtual machines or hosts.

Flavor

A compute instance with a specific amount of virtual
CPU cores, system memory (RAM), storage and optional-
ly, an attached GPU. Flavors can vary between operator
networks.

Operator A supplier of one of more cloudlets

Developer

A user of the APIs who can (i) upload and manage
application images, (ii) create clusters and (iii) deploy
applications and instances. Developers are members
of organizations and can have varied administrative
capabilities. Only the developers who are members of
a particular organization can see the applications and
other objects within it.

Organization

A group of users associated with applications and
application deployment policies. When an organization
is created it automatically provisions image registries for
exclusive use by the organization

ADE

Application Discovery Engine, The primary function of the
ADE is to match an end-user with an application instance.
The matching process is initiated once the end user’s de-
vice sends a registerClient API call via client SDK. The ADE
receives this API call, searches an inventory of application
instances, and enables the end-user device to establish
an encrypted communication channel with the closest
instance.

Upon calling the supplemental findCloudlet API, the end
user’s application is matched with the closest application
instance satisfying the desired QoE.

For the findCloudlet API call to succeed, the application
backend is instantiated on at least one of the cloudlets
within the operator network in which the end user’s device
is connecting. It is the responsibility of the developer to
choose the initial cloudlet (location) in which the applica-
tion backend is deployed.

